

Welcome to GliderFlight’s documentation!

This manual covers the use of the Python module GliderFlight.

GliderFlight is written in Python3, and is released as open source
software under the MIT License.

Contents:

	GliderFlight for Slocum ocean gliders
	Synopsis

	Changelog

	Background

	Documentation

	Steady-state model

	Dynamic model

	Model calibration and data masking

	Example

	How to cite

	Copyright information

	References

	Installing GliderFlight
	Download

	Installing

	PyPi

	Using the GliderFlight module

	Glidertrim
	Synopsis

	Description

	Estimated pitch relationship

	gliderflight
	gliderflight package

Contact

If you have any suggestions, remarks or feature wishes, you can
contact me via

email: <lucas.merckelbach@hzg.de>

Indices and tables

	Index

	Module Index

	Search Page

 [image: PyPI version] [https://pypi.org/project/gliderflight] [image: Docs badge] [https://gliderflight.readthedocs.io/en/latest/] [image: License] [https://github.com/smerckel/gliderflight/blob/master/LICENSE]

GliderFlight for Slocum ocean gliders

Synopsis

Gliderflight is a python module to calibrate a model that predicts the
glider flight through water. The model results can be used to estimate
the speed through water, a parameter which is required to compute
turbulent dissipation rates from temperature microstructure or shear
probe data, collected with a turbulence profiler mounted on top of an
ocean glider.

Changelog

Version 1.2.0

	Added paralel computing of solution for dynamic model

	Added logging module for reporting of diagnostic messages

	The named typle model_result now contains depth

	Several small bug fixes

Version 1.0.1

	Small bug fixes

Verions 1.0.0

	Initial release

Background

The dissipation rate of turbulent kinetic energy is a parameter that
plays a key role in many physical and biogeo chemical processes in
oceans and coastal seas. However, direct oceanic measurements of
turbulence are relatively scarce, as most observations stem from
free-falling profilers, operated from seagoing vessels.

An emerging alternative to ship-based profiling is the use of ocean
gliders with mounted turbulence profilers. A required parameter in
the processing of microstructure shear and temperature measurements is
the speed of flow past the sensors. This speed can be measured
directly with additional sensor, such as an electromagnetic current
meter or mounted acoustic Doppler current profiler, but often gliders
are not equipped with additional velocity sensors. Alternatively, a
glider flight model can be used to estimate the speed through
water. Such a model is described in the paper A dynamic flight model
for Slocum gliders and implications for turbulence microstructure
measurements [merckelbach2019]. This Python
model implements the steady-state and dynamic glider flight models,
described therein.

Documentation

Documentation of this software package can be found at
https://gliderflight.readthedocs.io/en/latest/

Steady-state model

The steady-state model implemented, considers a horizontal and
vertical force balance. Vertical forces are a balance between
buoyancy, gravity and the vertical components of the lift and drag
forces. The horizontal force balance consists of the horizontal
components of the lift and drag forces only. These two equations can
be solved for the angle of attack and the speed through water,
determining the flight at any instance of time.

Input to the model comes from parameters measured by the glider, such
as the measured pitch angle (m_pitch), buoyancy change
(m_ballast_pumped or m_de_oil_vol) and the in-situ
density. Furthermore, the model requires the specification of a number
of coefficients:

	mg: mass of the glider (kg)

	Vg: volume of the glider (m³)

	Cd0: parasite drag coefficient

	epsilon: compressibility of the hull (1/Pa)

	ah: lift angle coefficient due to the hull (1/rad)

	Cd1: induced drag coefficient (1/rad²)

Using the depth-rate from the pressure sensor as only model
constraint, the mass (or glider volume) and the parasite drag
coefficient can be determined. To determine the lift angle coefficient
requires an additional constraint that contains a horizontal velocity
component. Details of this procedure are given in [merckelbach2019].

Dynamic model

In addition to a steady-state model, this code also implements a
dynamic model, that is, including the inertial terms. Since this model
needs to be integrated, for which the Runge-Kutta method is used, it
is more computational expensive. The dynamic model produces more
accurate results when forcing conditions change rapidly, such as when
crossing a sharp pycnocline or during the transition from dive to
climb. Apart from the mathematical model underlying, the interfaces to
both models are the same.

Model calibration and data masking

To calibrate a model, either steady-state or dynamic, we may wish not
to include all the data in the evaluation of the cost-function. To
that end, data can be masked. The Calibrate class provides boolean
operators to do this:

	OR()

	AND()

	NAND()

By default a mask set to False for all data. To mask data for which a
condition evaluates to True, the OR() method should be used. For
example,

gm = SteadyStateCalibrate(rho0=1024)
gm.set_input_data(datadict)

condition = depth<10
gm.OR(condition)

which would exclude all data points for which the depth is less than
10 m from the evaluation of the cost-function.

A truth table:

	mask

	conditon

	OR

	AND

	NAND

	0

	0

	0

	0

	1

	1

	0

	1

	0

	1

	1

	1

	1

	1

	0

	0

	1

	1

	0

	1

Example

An example to calibrate a model:

create a dictionary with the data

data = dict(time=t, pressure=P, pitch=pitch, buoyancy_change=deltaV)

gm = SteadyStateCalibrate()
we have to define mass and volume at the minimum
gm.define(mg=70, Vg=70)

gm.set_input_data(data)

mask all data below 10 m
gm.OR(pressure*10<10)
mask all data exceeding 60 m
gm.OR(pressure*10>60)

result = gm.calibrate("mg", "Cd0")

print("Calibrated parameters:")
for k,v in result.items():
 print("{}: {}".format(k,v)

Instead of printing the parameters from the results, we could also
get them from the corresponding attributes: print("Cd0:", gm.Cd0).

print("Cd0:", gm.Cd0)

We also don't need to run the model again either. The model output
is also accessible from attributes:
#
gm.t # time
gm.U # incident velocity
gm.alpha # angle of attack
gm.ug # horizontal speed
gm.wg # vertical speed
gm.w # vertical water velocity

if we want to run a model with a given set of parameters

fm = DynamicGliderModel(dt=1, rho0=1024, k1=0.02, k2=0.92)
copy the settings from the steady state model
fm.copy_settings(gm)

solution = fm.solve(data)

solution is now a named tuple, according to the definition:
Modelresult = namedtuple("Modelresult", "t u w U alpha pitch ww")

How to cite

When you publish results that were obtained with this software, please use the
following citation:

Merckelbach, L., A. Berger, G. Krahmann, M. Dengler, and J. Carpenter, 2019: A

dynamic flight model for Slocum gliders and implications for turbulence

microstructure measurements. J. Atmos. Oceanic Technol., 36(2),

281-296, doi:10.1175/JTECH-D-18-0168.1.

Copyright information

	Copyright (c) 2018, 2019 Helmholtz Zentrum Geesthacht, Germany

	Lucas Merckelbach, lucas.merckelbach@hzg.de

Software is licensed under the MIT licence.

References

	merckelbach2019(1,2)

	Merckelbach, L., A. Berger, G. Krahmann, M. Dengler, and J. Carpenter, 2019: A
dynamic flight model for Slocum gliders and implications for
turbulence microstructure measurements. J. Atmos. Oceanic
Technol. 36(2), 281-296, doi:10.1175/JTECH-D-18-0168.1

Installing GliderFlight

Download

The software’s repository is hosted on github [https://github.com/smerckel/gliderflight], from where you can
download the source using git or download it as a zip file.

Installing

After having obtained the source code, you can build it using the
standard way of installing python code. On linux this would be

$ python3 setup.py build
$ python3 setup.py install

Depending on your system setup, the install command may require root privileges.

Dependencies

The gliderflight module depends on numpy.

The glidertrim script – useful to check and adjust the ballast trim
of glider during deployment – additionally depends on scipy,
matplotlib, gsw, and dbdreader. All these packages are available from
PyPi and will be downloaded automatically when not present. However,
you may prefer to install the complex packages numpy, scipy and
matplotlib using your distribution’s package manager (when on linux).

See also the file requirements.txt in the root directory.

PyPi

Glider flight is available from pypi

pip install gliderflight

Using the GliderFlight module

How to use the GliderFlight module is probably best done with a worked
example.

First we need some data to work with. Let’s say we have some data
files from a Slocum glider. Typically, we would work with the
high-density data files, and would need to have access to the
engineering data, which are stored in files with the dbd extension,
and science data, which are stored in files with the ebd extension. In
this example, we use dbdreader to read the glider files. The
Python module dbdreader can be installed from PyPi using pip3
install --user dbdreader or install from source from github [https://github.com/smerckel/dbdreader]

import numpy as np

import dbdreader
dbd = dbdreader.MultiDBD(pattern = "/path/to/data/*.[de]bd")

Now we have a handle to the data files, we need to extract the
required parameters. From the engineering data, we need the pitch and
the buoyancy drive. From the science data, we need the CTD
parameters. Instead of relying on the time of publishing, we take the
ctd sampling time sci_ctd41cp_timestamp. Occasionally, the CTD
fields contain data that have not been sampled, and default values are
returned. These default values can be detected from time stamps to be
zero, for example. After reading the values, we simply remove odd ones.

tmp = dbd.get_sync("sci_ctd41cp_timestamp", "sci_water_temp", "sci_water_cond", "sci_water_pressure", "m_pitch", "m_ballast_pumped")
_, tctd, T, C, P, pitch, buoyancy_change = np.compress(tmp[1]>0, tmp, axis=1)

Since version 0.4.0 of dbdreader we can also MultiDBD’s method
get_CTD_sync():

tctd, T, C, P, pitch, buoyancy_change = dbd.get_CTD_sync("m_pitch", "m_ballast_pumped")

In the example, we used the sensor name m_ballast_pumped, which is
appropriate for a shallow glider. When data from a deep glider were
used, the name should be replaced by m_de_oil_vol.

One of the input parameters to the glider flight model is the in-situ
density. So let’s compute that one first. For this, we use the Gibbs
Seawater module, instllable using pip (for example, pip3
install --user gsw), or from source from
https://github.com/TEOS-10/GSW-python. Also, we need latitude and
longitude information. This information could be retrieved from the
glider parameters m_gps_lat and m_gps_lon, condensed into a
single scalar, as an array of same length as T.

import gsw
C is given in S/m, and P in bar
SP = gsw.SP_from_C(C*10, T, P*10)
SA = gsw.SA_from_SP(SP, P*10, lon, lat)
rho = gsw.rho_t_exact(SA, T, P*10)

Now we have density, we can pack all the required data into a dictionary:

data = dict(time = tctd, pressure = P, pitch = m_pitch, buoyancy_change=buoyancy_change, density=density)

Most likely, you would want to use that data to calibrate some model
coefficients that change from depolyment to deployment, such as the
glider volume, and drag coefficient. To that end, we create an
instance from the SteadyStateCalibrate class. and populate it with the data we have got.

import gliderflight

gm = gliderflight.SteadyStateCalibrate(rho0=1024)
gm.set_input_data(**data)
or, alternatively
gm.set_input_data(tctd, P, pitch, buoyancy_change, rho)

When we calibrate a steady-state model, we don’t want to include data
points were we know the steady-state model is invalid, such as around
the transitions from down to up casts, and near the surface. Assuming
that we have dive profiles down to 100 m, may discard the first 20 m,
and the last 20 m of the dives when optimising the model against the
observed pressure rate.

condition = np.logical_or(P*10<20, P*10>80)
gm.OR(condition)

Before we can start calibrating the model, we need to set glider and
deployment specific model coefficients. Let’s say we weighted the
glider and found its mass to be \(m_g=70\) kg. (If the mass of the
glider is not know, it can be guessed. The calibration method will
adjust the volume such that the glider density is correct. An error
in the volume will have a small effect on the buoyancy force
calculated. As long as the mass (or the volume) is correct withing a
few percent, the errors involved are negligible.

So, we will set the mass and the volume. Also, we will set the
parasite drag to a realistic value.

gm.define(mg=70.000, Vg=70e-3, Cd0=0.16)
if not gm.undefined_parameters():
 print("We still have undefined parameters...")
 print(gm.undefined_parameters())

Now we’re good to run the calibration and store the results in
calibration_result.

calibration_result = gm.calibrate("Vg", "Cd0")

upon which we should have a dictionary with the keys “Vg” and “Cd0” and their optimised values. The coefficients are also updated in the model itself. So, gm.Cd0 would return the same value as reported in the dictionary.

To the the glider flight results, such as angle of attack and incident
water velocity, it is not necessary to solve the model again. So, all these parameters are accessible via gm.modelresult or using the properties t, ug, wg, alpha and U.

So, we could now plot the incident water velocity as function of time:

import matplotlib.pyplot as plt

f, ax = plt.subplots(1,1)

ax.plot(gm.t, gm.U, label='Incident water velocity')
ax.set_xlabel('time (s)')
ax.set_ylabel('U m s$^{-1}$')
ax.legend()

Glidertrim

Glidertrim is a simple commandline utility, that, given one or more
pairs of dbd/ebd files, and a target density, computes the optimum
weight change. The typical application is that during the deployment
a test dive is made, and the resulting dbd/edb files are analysed
quickly, producing an objective estimate of how much a glider is
overweight or underweight, given a target density.

Synopsis

glidertrim <glidername> <dbd file> [dbd file] [dbd file]

glidername is the name or identifier of the glider. It is used to
write settings in the configuration file ($HOME/.glidertrimrc), so
that the settings can be prepared prior to deployment and recorded for
later use.

dbd_file is a path to a dbd file and can included wildcards. It is
important that the dbd filename is provided only, but the matching ebd
file is present in the same directory the dbd file resides in.

Description

Glidertrim takes a glider id and one or more dbd (with matching ebd)
files as input, and given some configuration settings which the user
can change, calculates the ideal weight change.

An example is given below:

$ glidertrim comet comet-2018-136-00-000.dbd
comet-2018-136-00-000.dbd found. Ok

Enter value for target_density (kg/m^3) (current: 1026.000000):
Enter value for mg (kg) (current: 69.500000):
Enter value for Vg (m^3) (current: 0.065000):
Enter value for minlimitdepth (m) (current: 3.000000):
Enter value for maxlimitdepth (m) (current: 55.000000):
Enter value for cond_a (m/S) (current: 1.000000):
Enter value for cond_b (-) (current: 0.000000):
Enter value for buoyancy_engine (shallow|deep) (current: deep):
Enter value for latitude (decimal deg) (current: 54.000000):
Enter value for longitude (decimal deg) (current: 8.000000):
Enter value for calibrate_epsilon (yes|no) (current: no):
Error: 1.1079233e-01 - Cd0=0.1500 Vg=0.0650
Error: 1.0586534e-01 - Cd0=0.1575 Vg=0.0650
:
:
Error: 1.7395719e-03 - Cd0=0.3100 Vg=0.0678
Error: 1.7395722e-03 - Cd0=0.3100 Vg=0.0678
Error: 1.7395718e-03 - Cd0=0.3099 Vg=0.0678

Drag coefficient Cd : 0.309885 (-)
Glider volume Vg : 0.067768 (m^3)
Glider compressibility : 5.000000 (*e-10)
Glider density : 1025.555502 (kg/m^3)
Weight change : 30.122814 (g)

Estimated pitch relationship:
tan(pitch) = T1 * buoyancy(m^3) + T2 * battpos(m) + T3 (tan(pitch0)) + T4 P (kbar)
T1 : 1784.9588582927518
T2 : -23.879872610869665
T3 : 0.09352561010068428
T4 : 0
Press enter to exit

A table with configurable parameters is shown below:

	Parameter (unit)

	Description

	target_density (kg/m^3)

	target density

	mg (kg)

	(measured) mass of glider

	Vg (m^3)

	estimate of glider volume

	minlimitdepth (m)

	minimum depth allowed in optimisation routine

	maxlimitdepth (m)

	maximum depth allowed in optimisation routine

	cond_a (m/S)

	scaling factor for correcting conductivity

	cond_b (-)

	offset for correcting conductivity

	buoyancy_engine (shallow|deep)

	sets buoyancy engine used, deep or shallow

	latitude (decimal deg)

	latitude of experiment (used for density)

	longitude (decimal deg)

	longitude of experiment (idem)

	calibrate_epsilon (yes|no)

	whether or not to calibrate for compressibility

The user is presented with default values and has the option to change
the value or simply press enter, which retains the defailt
value. After entering the last configuration parameter, the utility
optimises for the parasite drag coefficient Cd0, the glider volume Vg,
and, if calibrate_epsilon is set to “yes”, the compressibility.

After the optimised values are found, they are displayed. Among the
results returned are the glider density and the required weight change
to match the glider’s density to the target density.

The results are also shown graphically. The left panel shows the
vertical profiles of water velocity (raw and filtered), the glider
vertical velocity and the glider speed through water. The right panel
shows the in-situ density profile, the target density, and the actual
glider density (accounting for the compressibility). The dashed lines
refer to the glider’s density with increments of 50 g of weight
change.

Estimated pitch relationship

The pitch the glider assumes during diving and climbing depends on the
total torque exerted on the glider. Components influening the torque
balance are the mass, the so-called h-moment (distance between the
centres of buoyancy and gravity), the buoyancy drive, pitch battery
position and pressure. Based on a linear regression model the
contributions to the pitch by the buoyancy change, battery position,
and pressure are estimated. The intended purpose is for glider flight
simulations to use the correct pitch, when pitch is not set directly,
but through a fixed battery position, for example.

The relationship for the pitch is given by

\[\tan(\phi) = T_1 \cdot V_b + T_2 \cdot b_p + T_3 + T_4 \cdot P,\]

where

\(V_b\) is the buoyancy change in m3

\(b_p\) is the battery position in m, and

\(P\) is the pressure in kbar.

gliderflight

	gliderflight package
	Submodules

	gliderflight.gliderflight module

	gliderflight.glidertrim module

	Module contents

gliderflight package

Submodules

gliderflight.gliderflight module

	
class gliderflight.gliderflight.Calibrate(xtol=0.0001)

	Bases: object

Generic class providing the calibration machinery for steady-state and dynamic flight models

Basic steps are to

	set input data using the set_inputdata() method,

	mask data that should not take part in the minimisation routine (data near the dive apices,
at the start of the dive, pycnoclines, etc.

	run the calibration.

Logical operators are used to mask data:

OR, AND, and NAND are implemented, and work on the mask

	Parameters

	xtol (float) – tolerance in error in the parameters to be minimised.

	
AND(mask)

	Logical AND

The new mask is the intersection (AND) of the existing mask and supplied mask

	Parameters

	mask (array of bool or bool) –

	
NAND(mask)

	Logical NAND

The new mask is the inverted intersection of the existing mask and the supplied mask.
:param mask:
:type mask: array of bool or bool

	
OR(mask)

	Logical OR

The new mask is the union (OR) of the existing mask and the supplied mask.

	Parameters

	mask (array of bool or bool) –

	
calibrate(*p, constraints=('dhdt',), weights=None, verbose=False)

	Calibrate model

Given one or more model coefficients and specifications of measurements to use, this
method calibrates the model, using the self.cost_funtion() method. The interface is flexible
so any parameter that is used in the model description can be optimised for. Also the velocity
component or combination of components can be set.

	Parameters

	
	p (variable length parameters) – variable length of parameter names to be optimised.

	constraints (list/tuple of str) – names of measured velocities against which glider flight is evaluated. These must be present in the dictionary supplied by the set_input_data() method.

	weights (None or array-like) – weights. If more than one constraint is provided, weights sets their relative importance.

	verbose (bool) – prints intermediate results during optimising

	Returns

	rv – the result of the optimisation routine

	Return type

	dict

Examples

>>> # calibrating for mass and drag coefficient (implicitly using depth-rate) and printing
>>> # intermediate results (mainly for debugging/progress monitoring)
>>> results = gm.calibrate("mg", "Cd0", verbose=True)
>>> print(results)
 {'mg': 70.00131, 'Cd0':0.145343}
>>>
>>> # Also calibrating the lift coefficient using measured incident water velocity
>>> results = gm.calibrate("mg", "Cd0", "ah", constraints=('dhdt', 'U_relative'), weights=(0.5, 0.5), verbose = True)
>>> print(results)
 {'mg': 70.00131, 'Cd0':0.145343, 'ah':3.78787}

Notes

The default measurement to evaluate the model against is the depth rate dhdt. If not specified when
setting the input data using the set_input_data() method, it is computed automatically. Other velocity
components that are to be used to calibrate the model have to be set specifically.

	
cost_function(x, parameters, constraints, weights, verbose)

	Cost-function used to optimise parameters

This method first sets the parameters which are to be optimised for, and then
computes the glider flight. A “cost” is computed from relatively weighted constraints.

	Parameters

	
	x (array) – values of the parameters to be varied

	parameters (list of str) – parameter names

	constraints (tuple or list of str) – names of measured velocities against which glider flight is evaluated. These must be present in the dictionary supplied by the set_input_data() method.

	weights (None or array-like of float) – weights of constraints. If more than one constraint is provided, weights sets their relative importance.

	verbose (bool) – print intermediate results during optimising if set True

	Returns

	mse – RMS value of exposed measurements (not masked)

	Return type

	float

Different constraints can be applied, and if more than one, their relative contribution is set with weights.

Valid options:

dhdt : the error is computed from the difference between modelled w and observed dhdt
w_relative : the error is computed from the difference between modelled w and w_relative (set separately to data dictionary)
u_relative : the error is computed from the difference between modelled u and u_relative (set separately to data dictionary)
U_relative : the error is computed from the difference between modelled U and U_relative (set separately to data dictionary)

depth : (experimental) the error is computed from the modelled and observed glider depth.

	
set_input_data(time, pressure, pitch, buoyancy_change, density, dhdt=None, u_relative=None, w_relative=None, U_relative=None, **kwds)

	Sets the input data
time
pressure
pitch
buoyancy_change
in-situ density
and optionally u_relative and w_relative

	Parameters

	
	time (array) – time (s)

	pressure (array) – pressure (Pa)

	pitch (array) – pitch (rad)

	buoyancy_change (array) – buoyancy change reported by the glider (cc)

	ensity (array) – in-situ density (kg m${-3}$)

	dhdt (array, optional) – depth rate m s$^{-1}$ (if not given it is computed from pressure)

	u_relative (array, optional) – measured horizontal speed m s$^{-1}$

	w_relative (array, optional) – measured vertical speed m s$^{-1}$

	U_relative (array) – measured speed through water m s$^{-1}$

Notes

A mask is automatically created (including all data) when this method is called.

	
set_mask(mask)

	Set a mask

Masks those data that should not be used to calibrate.

	Parameters

	mask (array of bool or bool) –

Notes

If already set ones (after set_input_data(), then mask can be
True or False to set all elements in mask.

	
class gliderflight.gliderflight.Diagnostics(t, rho, U, FB, FD, FL)

	Bases: tuple

	
FB

	Alias for field number 3

	
FD

	Alias for field number 4

	
FL

	Alias for field number 5

	
U

	Alias for field number 2

	
rho

	Alias for field number 1

	
t

	Alias for field number 0

	
class gliderflight.gliderflight.DynamicCalibrate(rho0=None, k1=0.02, k2=0.92, dt=None, alpha_linear=90, alpha_stall=90, max_depth_considered_surface=0.5, max_CPUs=None)

	Bases: gliderflight.gliderflight.DynamicGliderModel, gliderflight.gliderflight.Calibrate

Dynamic glider flight model, with calibration interface

	
class gliderflight.gliderflight.DynamicGliderModel(dt=None, rho0=None, k1=0.2, k2=0.92, alpha_linear=90, alpha_stall=90, max_depth_considered_surface=0.5, max_CPUs=None)

	Bases: gliderflight.gliderflight.ModelParameters, gliderflight.gliderflight.GliderModel

Dynamic glider model implementation

This class inherits from ModelParameters and GliderModel. The physcis are
provided by GliderModel. Interacting with ModelParameters is done through methods
provided by ModelParameters.

	Parameters

	
	dt (float or None) – time step (s)

	rho0 (float) – background density (kg m$^{-3}$)

	k1 (float) – added mass fraction in longitudinal direction

	k2 (float) – added mass fraction perpendicular to longitudinal direction

	alpha_linear (float) – angle (rad) up to which the parameterisation is considered linear

	alpha_stall (float) – angle (rad) up to which no lift will be generated (stalling angle)

	max_depth_considered_surface (float) – depth as reported by the pressure sensor which is considered the surface (u=w=0)

	max_CPUs (int) – maximum number of CPUs to use (clips at system availabel CPUs)

The only method provided by this class that is of interest to the user is solve().
The input to solve is a dictionary with time, pressure, pitch, buoyancy change density.

Methods inherited from ModelParameters can be used to define/set model coefficients, and
to copy settings from another model instance.

After solving the model results are available as properties (t, U, wg, w, alpha)

The dynamic model solves the force balances including the intertial forces by numerical integration
using a Runge-Kutta scheme. The inertial terms include the added mass terms. The relevant parameters
can be set when creating an instance of this class.

Added mass

Added mass terms are specified by the coefficients k1 and k2, which refer to the added mass terms
along the principle glider axis (k1) and vertically perpendicular (k2), where k1 and k2 are given
as fraction of the glider mass mg.

Examples

>>>dm = DynamicGliderModel(rho0=1024, k1=0.2, k2=0.92, mg=70)
>>>dm.define(mg=70)
>>>dm.define(Vg=68, Cd0=0.15)
>>>dm.solve(dict(time=tctd, pressure=P, pitch=pitch, buoyancy_change=buoyancy_drive, density=density))
>>>print(dm.U)

	
RK4(h, M, FBg, pitch, rho, at_surface, Cd0, u, w)

	Runge-Kutta integration method

Implementation to solve the model using the classic Runge-Kutta integration method.

	Parameters

	
	h (float) – time step (s)

	M (matrix (2x)) – mass (and added mass matrix, inverted)

	FBg (array) – nett buoyancy force

	pitch (array) – pitch as recored by glider (rad)

	rho (array) – in-situ density (kg m$^{-3}$)

	at_surface (array of bool) – condition whether or not at the surface

	u (array) – horizontal glider velocity (m s$^{-1}$)

	w (array) – vertical glider velocity (m s$^{-1}$)

	Cd0 (array) – Lift coefficient per time step

Notes

The results are not returned as such. The parameters u and w are updated in place.

	
assemble_results(results, intervals)

	

	
compute_inverted_mass_matrix(pitch)

	Computes the inverse of the mass matrix

not to be called directly

	
integrate(data)

	integrate system

not to be called directly

	
process_fun(interval, **arg_funs)

	

	
solve(data=None)

	Solve the model

Solves the flight model.

	Parameters

	data (dict or None) – environment data (see Notes)

	Returns

	modelresult – model result (named tuple with arrays of computed results)

	Return type

	Modelresult

Notes

The data supplied should contain at least time, pressure, pitch, buoyancy_change and
density, as reported by the glider. Depth rate (dhdt) will be added if not already present.
Other data are ignored.

The intergration of the model maps the results on the time vector. For this to work successfully
it is essential that there are no time duplicates or time reversals. The latter can occur when
the system clock is updated with GPS time.

Use the methods remove_duplicate_time_entries() and
ensure_monotonicity().

Examples

>>> dm = DynamciGliderModel(dt=1, k1=0.2, k2=0.98, rho0=1024)
>>> dm.define(mg=70, Vg=68)
>>> data = dict(time=time, pressure=P, pitch=pitch, buoyancy_change=vb, density=rho)
>>> dm.solve(data)
>>> plot(dm.U)

	
stall_factor(alpha)

	

	
class gliderflight.gliderflight.GliderModel(rho0=None)

	Bases: object

Common glider model class

This class, meant to be subclassed, implements the physical glider model description

	
G = 9.81

	

	
RHO0 = 1024

	

	
U

	incident water velocity (m s$^{-1}$)

	
alpha

	angle of attack (rad)

	
compute_FB_and_Fg(pressure, rho, Vbp, mg=None, Vg=None)

	Computes the vertical forces FB and Fg

	Parameters

	
	pressure (array-like or float) – pressure (Pa)

	rho (array-like or float) – in-situ density (kg m$^{-3}$)

	Vbp (array-like or float) – volume of buoyancy change (m$^{-3}$)

	mg (array-like, float or None) – mass of glider (kg). If None (default), then
self.mg is used for the computation

	Vg (array-like, float or None) – Volume of glider (m3). If None (default), then
self.Vg is used for the computation

	Returns

	
	FB (Buoyancy force) – array-like or float

	Fg (Gravity force) – float

	
compute_dhdt(time, pressure)

	Compute the depth rate from the pressure

	Parameters

	
	time (array-like) – time in s

	pressure (array-like) – pressure (Pa)

	Returns

	depth-rate (m/s)

	Return type

	array-like

Notes

The density used to convert pressure into depth is given by self.RHO0

	
compute_lift_and_drag(alpha, U, rho, Cd0=None)

	Compute lift and drag forces

Computes lift and drag forces using parameterised functions

	Parameters

	
	alpha (array-like or float) – angle of attack

	U (array-like or float) – incident water velocity

	rho (array-like or float) – in-situ density

	Cd0 (array-like, float or None) – parasite drag coefficient (-). If None (default), then
self.Cd0 is used for the computation

	Returns

	
	q (array-like or float) – dynamic pressure (Pa)

	L (array-like or float) – lift force (Pa)

	D (array-like or float) – drag force (Pa)

	
convert_pressure_Vbp_to_SI(m_water_pressure, m_de_oil_vol)

	converts units of glider sensor data into SI data

	Parameters

	
	m_water_pressure (array-like or float) – water pressure in bar

	m_de_oil_vol (array-like or float) – buoyancy change reported by glider in cc

	Returns

	
	pressure (array-like or float) – pressure (Pa)

	Vbp (array-like or float) – volume of bulyancy change (m^3)

	
ensure_monotonicity(data, T_search_span=600)

	Ensure monotonicity of the data series.

	Parameters

	
	data (dict) – dictionary with environment data.

	T_search_span (float (600)) – time span to search back in time for time gaps

	Returns

	dictionary with updated environment data.

	Return type

	dict

Notes

Some times the glider clock gets corrected when it deviates
too much from the GPS time. This happens of course at the
surface. It can be that time is stepped backwards, which
means that the timestamps are not monotonic any more. The
strategy we adopt here is, because it happens at the
surface, we look if there is a time gap (due to data
transmission for example) in the interval 10 minutes prior
the time shift. Then we simply move this section of time
backwards as well. If this is not possible, we undo the time
correction and move all timeseries forward in time.

	
pitch

	pitch angle (rad)

	
remove_duplicate_time_entries(data)

	

	
stall_factor(alpha, **kwds)

	

	
t

	time (s)

	
w

	vertical water velocity (m s$^{-1}$)

	
wg

	vertical velocity of glider relative to surface (m s$^{-1}$)

	
exception gliderflight.gliderflight.ModelParameterError

	Bases: BaseException

	
class gliderflight.gliderflight.ModelParameters(parameterised_parameters_dict)

	Bases: object

Configuration class for glider model parameters

This class defines the configuration parameters of the glider
model. The class is meant to be subclassed from model
implementations.

	Parameters

	parameterised_parameters_dict (dict) – dictionary of parameters that should be computed rather then being set explicitly

Methods defined in this class:

	define(): define or set a parameter

	show_settings(): prints the current settings

	copy_settings(): updates model parameter settings from another model

	undefined_parameters(): returns which parameters have not been set yet.

	cd1_estimate(): estimates the induced drag coefficient

	aw_estimate: estimates the lift coefficient due to the wings using a parameterisation

	
awEstimate()

	Parameterisation for aw

Computes aw using a parameterisation

	Returns

	aw_param – parameterised value of aw

	Return type

	float

Notes

If aw is set by using define, the set value takes precedence.

	
cd1Estimate()

	Parameterisation for Cd1

Computes Cd1 using a parameterisation.

	Returns

	Cd1_param – parameterised value of Cd1

	Return type

	float

Notes

If Cd1 is set by using define, the set value takes precedence.

	
copy_settings(other)

	Copy model parameters

Copy model parameters from a different instance of ModelParameters and apply it to
to self.

	Parameters

	other (ModelParameters) – an other instance of this class (or subclassing this class)

Examples

>>> dynamic_model.copy_settings(steady_state_model)

	
define(**kw)

	Define (set) one or more glider configuration parameters.

	Parameters

	kw (dict) – keywords with parameter name and values

Examples

>>> glidermodel.define(Cd0=0.24)
>>> glidermodel.define(Vg=50e-3, mg=60)

	
get_settings()

	Get model settings

Return a dictionary with model coefficient settings

	Returns

	settings – a dictionary with the current parameter setting

	Return type

	dict

	
has_aoa_parameter_changed()

	test whether any of the parameters that appear in the angle of attack estimate have changed

	Returns

	rv – test result

	Return type

	bool

	
show_settings()

	Prints model parameters

	
undefined_parameters()

	Returns undefined parameters

Checks all model coefficients for having been set. All coeficients set to None
are returned.

	Returns

	list – list of undefined parametrs

	Return type

	list-comprehension

	
class gliderflight.gliderflight.Modelresult(t, u, w, U, alpha, pitch, ww, depth)

	Bases: tuple

	
U

	Alias for field number 3

	
alpha

	Alias for field number 4

	
depth

	Alias for field number 7

	
pitch

	Alias for field number 5

	
t

	Alias for field number 0

	
u

	Alias for field number 1

	
w

	Alias for field number 2

	
ww

	Alias for field number 6

	
class gliderflight.gliderflight.SteadyStateCalibrate(rho0=None)

	Bases: gliderflight.gliderflight.SteadyStateGliderModel, gliderflight.gliderflight.Calibrate

Steady-state glider flight model, with calibration interface

	
class gliderflight.gliderflight.SteadyStateGliderModel(rho0=None)

	Bases: gliderflight.gliderflight.ModelParameters, gliderflight.gliderflight.GliderModel

Steady-state implementation

This class inherits from ModelParameters and GliderModel. The physcis are
provided by GliderModel. Interacting with ModelParameters is done through methods
provided by ModelParameters.

	Parameters

	rho0 (float) – background in-situ density

The only method provided by this class that is of interest to the user is solve().
The input to solve is a dictionary with time, pressure, pitch, buoyancy change density.

Methods inherited from ModelParameters can be used to define/set model coefficients, and
to copy settings from another model instance.

After solving the model results are available as properties (t, U, wg, w, alpha)

Examples

>>> gm = SteadyStateGliderModel(rho0=1024)
>>> gm.define(mg=70)
>>> gm.define(Vg=68, Cd0=0.15)
>>> gm.solve(dict(time=tctd, pressure=P, pitch=pitch, buoyancy_change=buoyancy_drive, density=density))
>>> print(gm.U)

	
model_fun(x, m_pitch, Cd0)

	implicit function of the angle of attack

	Parameters

	
	m_pitch (float or array of floats) – measured pitch

	Cd0 (float) –

	is a parameter that might change during a mission, so self.Cd0 is set as an (Cd0) –

	this function needs to take Cd0 as a float at the appropriate time. It is (array,) –

	responsibility of the caller function to pass the value of Cd0. (the) –

	
reset()

	Resets angle of attack interpolation function

	
solve(data=None)

	Solve the model

Solves the flight model.

	Parameters

	data (dict) – environment data (see Notes)

	Returns

	modelresult – model result (named tuple with arrays of computed results)

	Return type

	Modelresult

Notes

The data supplied should contain at least time, pressure, pitch, buoyancy_change and
density, as reported by the glider. Depth rate (dhdt) will be added if not already present.
Other data are ignored.

Examples

>>> gm = SteadyStateGliderModel()
>>> gm.define(mg=70, Vg=68)
>>> data = dict(time=time, pressure=P, pitch=pitch, buoyancy_change=vb, density=rho)
>>> gm.solve(data)
>>> plot(gm.U)

	
solve_for_angle_of_attack(pitch)

	Solves for the angle of attack

Solves angle of attack using an interative method.

	Parameters

	pitch (array-like or float) – pitch (rad)

	Returns

	aoa – angle of attack (rad)

	Return type

	array-like or float

Notes

This method uses an interpolating function. If any parameter on which this calculation
depends, changes, the interpolating function is recomputed. Whether any of these parameters
is changed, is tracked by the ModelParameters.define() method.

	
solve_model(rho, FB, pitch, Fg)

	Solves first for angle of attack and then incident velocity

Not intended to be called directly.

gliderflight.glidertrim module

Module contents

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 gliderflight	

 	
 	
 gliderflight.gliderflight	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	alpha (gliderflight.gliderflight.GliderModel attribute)

 	(gliderflight.gliderflight.Modelresult attribute)

 	
 	AND() (gliderflight.gliderflight.Calibrate method)

 	assemble_results() (gliderflight.gliderflight.DynamicGliderModel method)

 	awEstimate() (gliderflight.gliderflight.ModelParameters method)

C

 	
 	Calibrate (class in gliderflight.gliderflight)

 	calibrate() (gliderflight.gliderflight.Calibrate method)

 	cd1Estimate() (gliderflight.gliderflight.ModelParameters method)

 	compute_dhdt() (gliderflight.gliderflight.GliderModel method)

 	compute_FB_and_Fg() (gliderflight.gliderflight.GliderModel method)

 	
 	compute_inverted_mass_matrix() (gliderflight.gliderflight.DynamicGliderModel method)

 	compute_lift_and_drag() (gliderflight.gliderflight.GliderModel method)

 	convert_pressure_Vbp_to_SI() (gliderflight.gliderflight.GliderModel method)

 	copy_settings() (gliderflight.gliderflight.ModelParameters method)

 	cost_function() (gliderflight.gliderflight.Calibrate method)

D

 	
 	define() (gliderflight.gliderflight.ModelParameters method)

 	depth (gliderflight.gliderflight.Modelresult attribute)

 	
 	Diagnostics (class in gliderflight.gliderflight)

 	DynamicCalibrate (class in gliderflight.gliderflight)

 	DynamicGliderModel (class in gliderflight.gliderflight)

E

 	
 	ensure_monotonicity() (gliderflight.gliderflight.GliderModel method)

F

 	
 	FB (gliderflight.gliderflight.Diagnostics attribute)

 	
 	FD (gliderflight.gliderflight.Diagnostics attribute)

 	FL (gliderflight.gliderflight.Diagnostics attribute)

G

 	
 	G (gliderflight.gliderflight.GliderModel attribute)

 	get_settings() (gliderflight.gliderflight.ModelParameters method)

 	
 	gliderflight (module)

 	gliderflight.gliderflight (module)

 	GliderModel (class in gliderflight.gliderflight)

H

 	
 	has_aoa_parameter_changed() (gliderflight.gliderflight.ModelParameters method)

I

 	
 	integrate() (gliderflight.gliderflight.DynamicGliderModel method)

M

 	
 	model_fun() (gliderflight.gliderflight.SteadyStateGliderModel method)

 	ModelParameterError

 	
 	ModelParameters (class in gliderflight.gliderflight)

 	Modelresult (class in gliderflight.gliderflight)

N

 	
 	NAND() (gliderflight.gliderflight.Calibrate method)

O

 	
 	OR() (gliderflight.gliderflight.Calibrate method)

P

 	
 	pitch (gliderflight.gliderflight.GliderModel attribute)

 	(gliderflight.gliderflight.Modelresult attribute)

 	
 	process_fun() (gliderflight.gliderflight.DynamicGliderModel method)

R

 	
 	remove_duplicate_time_entries() (gliderflight.gliderflight.GliderModel method)

 	reset() (gliderflight.gliderflight.SteadyStateGliderModel method)

 	
 	rho (gliderflight.gliderflight.Diagnostics attribute)

 	RHO0 (gliderflight.gliderflight.GliderModel attribute)

 	RK4() (gliderflight.gliderflight.DynamicGliderModel method)

S

 	
 	set_input_data() (gliderflight.gliderflight.Calibrate method)

 	set_mask() (gliderflight.gliderflight.Calibrate method)

 	show_settings() (gliderflight.gliderflight.ModelParameters method)

 	solve() (gliderflight.gliderflight.DynamicGliderModel method)

 	(gliderflight.gliderflight.SteadyStateGliderModel method)

 	
 	solve_for_angle_of_attack() (gliderflight.gliderflight.SteadyStateGliderModel method)

 	solve_model() (gliderflight.gliderflight.SteadyStateGliderModel method)

 	stall_factor() (gliderflight.gliderflight.DynamicGliderModel method)

 	(gliderflight.gliderflight.GliderModel method)

 	SteadyStateCalibrate (class in gliderflight.gliderflight)

 	SteadyStateGliderModel (class in gliderflight.gliderflight)

T

 	
 	t (gliderflight.gliderflight.Diagnostics attribute)

 	(gliderflight.gliderflight.GliderModel attribute)

 	(gliderflight.gliderflight.Modelresult attribute)

U

 	
 	U (gliderflight.gliderflight.Diagnostics attribute)

 	(gliderflight.gliderflight.GliderModel attribute)

 	(gliderflight.gliderflight.Modelresult attribute)

 	
 	u (gliderflight.gliderflight.Modelresult attribute)

 	undefined_parameters() (gliderflight.gliderflight.ModelParameters method)

W

 	
 	w (gliderflight.gliderflight.GliderModel attribute)

 	(gliderflight.gliderflight.Modelresult attribute)

 	
 	wg (gliderflight.gliderflight.GliderModel attribute)

 	ww (gliderflight.gliderflight.Modelresult attribute)

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to GliderFlight’s documentation!

 		
 GliderFlight for Slocum ocean gliders

 		
 Synopsis

 		
 Changelog

 		
 Background

 		
 Documentation

 		
 Steady-state model

 		
 Dynamic model

 		
 Model calibration and data masking

 		
 Example

 		
 How to cite

 		
 Copyright information

 		
 References

 		
 Installing GliderFlight

 		
 Download

 		
 Installing

 		
 Dependencies

 		
 PyPi

 		
 Using the GliderFlight module

 		
 Glidertrim

 		
 Synopsis

 		
 Description

 		
 Estimated pitch relationship

 		
 gliderflight

 		
 gliderflight package

 		
 Submodules

 		
 gliderflight.gliderflight module

 		
 gliderflight.glidertrim module

 		
 Module contents

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

